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Belgium

Capital: Brussels

Population: 11,000,000

King: Filip I
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1987 2005 2010 2015 2020

◦Belgium BS Eng. MS Eng. PhD

STEM Career:

2005–2008: BS Mechanical-Electrical Engineering

2008–2010: MS Mathematical Engineering

2011–2015: PhD Computer Science

KU Leuven, University of Leuven, Belgium
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KU Leuven, University of Leuven

Founded: 1425

Students: 50,000

Tuition: $1,000
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1987 2005 2010 2015 2020

◦Belgium BS Eng. MS Eng. PhD

PhD Thesis:

Rational Krylov methods for nonlinear eigenvalue problems
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My Research

∫ b

a
f (x)dx

Mathematics Engineering

Informatics
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Eigenvalue problems
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Eigenvalue problems
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Linear eigenvalue problem

x1

x2
xn

The eigenvalues and eigenmodes of a string are the solution of




a11 a12 . . . a1n
a21 a22 . . . a1n

...
...

. . .
...

an1 an2 . . . ann




︸ ︷︷ ︸
A




x1
x2
...
xn




︸ ︷︷ ︸
x

= λ




x1
x2
...
xn




︸ ︷︷ ︸
x

where

λ is an eigenvalue

x is an eigenvector
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Quadratic eigenvalue problem

Vibration analysis in structural analysis gives rise to

(λ2M + λC + K )x = 0

where

λ is an eigenvalue

x is an eigenvector

M is the mass matrix

C is the damping matrix

K is the stiffness matrix
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Nonlinear damping

Clamped beam:

(
λ2M + λC + K

)
x = 0

|C |

|λ|

Clamped sandwich beam:

(
λ2M + C (λ) + K

)
x = 0

|λ|

|C
(λ
)|

for λ on the imaginary axis
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Active damping

Active damping in cars:

input output
System

Controller

Delay eigenvalue problem

(
λ2M + λC + K + e−λτE

)
x = 0

R. Van Beeumen (CRD) Quantum Fourier Transform June 16, 2020 13



1987 2005 2010 2015 2020

◦Belgium BS Eng. MS Eng. PhD

BA Arch. MA Arch.

STEM Career:

2005–2008: BS Mechanical-Electrical Engineering

2006–2010: BA Archaeology

2008–2010: MS Mathematical Engineering

2010–2011: MA Archaeology

2011–2015: PhD Computer Science

KU Leuven, University of Leuven, Belgium
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Sagalassos Archaeological Research Project (Turkey)
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Sagalassos Archaeological Research Project (Turkey)
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1987 2005 2010 2015 2020

◦Belgium BS Eng. MS Eng. PhD

BA Arch. MA Arch.

Postdoc 1 Postdoc 2

STEM Career:

2005–2008: BS Mechanical-Electrical Engineering

2006–2010: BA Archaeology

2008–2010: MS Mathematical Engineering

2010–2011: MA Archaeology

2011–2015: PhD Computer Science

2015–2016: Postdoc @ KU Leuven

2016–2019: Postdoc @ Berkeley Lab

R. Van Beeumen (CRD) Quantum Fourier Transform June 16, 2020 17



Postdoc @ Berkeley Lab

LBNL Postdoc:
→ Computing Sciences Area
→ Computational Research Division
→ Applied Mathematics Department

→ Scalable Solvers Group

Research Projects:

Eigenvalue problems
Model order reduction
Numerical software development
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1987 2005 2010 2015 2020

◦Belgium BS Eng. MS Eng. PhD

BA Arch. MA Arch.

Postdoc 1 Postdoc 2 Scientist

Since 2019: Career-track Research Scientist @ Berkeley Lab

2019 LDRD Early Career Award

Project: Approximate Unitary Matrix Decompositions for Quantum Circuit Synthesis

1st Postdoc: Daan Camps
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Compiling Quantum Programs: Quantum Circuit Synthesis

Quantum Applications Quantum Chip

Quantum Program

Un qubits n qubits
encode 2n states encode 2n states

a quantum program U, is a
unitary matrix of size 2n × 2n,

too large to write down for large n

−→

Quantum Circuit

u1
u2

u3

u4
u5

u6

u7

u8

u9

u10

u11
u12

• •
•

• •
•

•
•

is a series of quantum gates,
each performing a simple unitary

transformation on only a few qubits
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Qubits and Quantum Circuits
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Classical Bit versus Qubit

Classical bit

2 states: 0 and 1

Quantum bit

linear combinations: |ψ〉 = α|0〉+ β|1〉

Computational basis states

|0〉 :=

[
1
0

]
|1〉 :=

[
0
1

]
|α|2 + |β|2 = 1
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Kronecker Products

Kronecker product of matrices A and B

A⊗ B :=




a11B a12B · · · a1,mB
a21B a22B · · · a2,mB

...
...

. . .
...

an,1B an,2B · · · an,mB




Properties
(γA)⊗ B = A⊗ (γB) = γ(A⊗ B)

A⊗ (B + C ) = A⊗ B + A⊗ C

(B + C )⊗ A = B ⊗ A + C ⊗ A

and
(A⊗ B)(C ⊗ D) = (AC )⊗ (BD)
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Unit Vectors and Identity Matrix

Unit vectors

e1 =

[
1
0

]
= |0〉 e2 =

[
0
1

]
= |1〉

Identity matrix

I2 =

[
1 0
0 1

]
=

[
1 0
0 0

]

︸ ︷︷ ︸
E1=e1e>1

+

[
0 0
0 1

]

︸ ︷︷ ︸
E2=e2e>2

Direct sum

A⊕ B =

[
A

B

]
= E1 ⊗ A + E2 ⊗ B

R. Van Beeumen (CRD) Quantum Fourier Transform June 16, 2020 24



Multiple qubits

2 qubits:
|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉

|00〉 :=


1
0
0
0

 |01〉 :=


0
1
0
0

 |10〉 :=


0
0
1
0

 |11〉 :=


0
0
0
1

 |α|2 + |β|2 + |γ|2 + |δ|2 = 1

n qubits:

state space of dimension 2n

linear combination of 2n computational basis states

|ψ〉 =
2∑

j1,...,jn=1

αj1j2···jn
(
ej1 ⊗ ej2 ⊗ · · · ⊗ ejn

)
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Quantum Circuits

Matrix notation

φ = Uψ

Quantum circuit

|ψ〉 U |φ〉

φ = Um · · ·U2U1ψ |ψ〉 U1 U2 · · · Um |φ〉

U ⊗ I
U

Uctr = I ⊕ U =

[
I

U

] •
U
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Quantum Gates

Hadamard H
1√
2

[
1 1
1 −1

]
Pauli-X X

[
0 1
1 0

]

Phase S

[
1 0
0 i

]
Pauli-Y Y

[
0 −i
i 0

]

π/8 T

[
1 0

0 eiπ/4

]
Pauli-Z Z

[
1 0
0 −1

]

Controlled-NOT (CNOT)
•




1
1

0 1
1 0
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CNOT gate: definition

1st qubit q1: control

2nd qubit q2: target

q1 • •
q2

=
X

controlled operation:

Uctr = I ⊕ X = E1 ⊗ I + E2 ⊗ X

controlled NOT:

CNOT =

[
1 0
0 0

]

︸ ︷︷ ︸
E1

⊗
[

1 0
0 1

]

︸ ︷︷ ︸
I

+

[
0 0
0 1

]

︸ ︷︷ ︸
E2

⊗
[

0 1
1 0

]

︸ ︷︷ ︸
X

=




1
1

0 1
1 0
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CNOT gate: behavior

target bit = |0〉

|0〉 • |0〉
|φ〉 |φ〉



1

1
0 1
1 0






∗
∗
0
0


 =



∗
∗
0
0


 = |0φ〉

target bit = |1〉

|1〉 • |1〉
|0〉 |1〉



1

1
0 1
1 0






0
0
1
0


 =



0
0
0
1


 = |11〉

|1〉 • |1〉
|1〉 |0〉



1

1
0 1
1 0






0
0
0
1


 =



0
0
1
0


 = |10〉

|00〉 :=


1
0
0
0

 |01〉 :=


0
1
0
0



|10〉 :=


0
0
1
0

 |11〉 :=


0
0
0
1
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SWAP gate: implemented by 3 CNOTs

SWAP gate:
q1 × q2
q2 × q1

can be implemented by 3 CNOTs

× • •
×

=
•

=




1
0 1
1 0

1




|00〉 :=


1
0
0
0

 |01〉 :=


0
1
0
0

 |10〉 :=


0
0
1
0

 |11〉 :=


0
0
0
1
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Quantum Fourier Transform
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Discrete Fourier Transform (DFT)

x : vector of length N −→ y : vector of length N

yk =
1√
N

N−1∑

j=0

ωkj
N xj , with ωN := e

−2πi
N

Matrix notation

y = FNx , FN :=
1√
N




ω0
N ω0

N ω0
N · · · ω0

N

ω0
N ω1

N ω2
N · · · ωN−1

N

ω0
N ω2

N ω4
N · · · ω

2(N−1)
N

...
...

...
. . .

...

ω0
N ωN−1

N ω
2(N−1)
N · · · ω

(N−1)(N−1)
N




Examples

F1 =
[
1
]
, F2 =

1√
2

[
1 1
1 −1

]
, F3 =

1√
3

1 1 1
1 ω3 ω2

3

1 ω2
3 ω3

 , F4 =
1

2


1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i


Complexity

Matvec: O
(
N2
)
−→ FFT: O

(
N log(N)

)
−→ QFT: O

(
(log(N)2

)
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Fast Fourier Transform (FFT)

applies Discrete Fourier Transform in O(N logN)

by recursively using radix-2 decomposition of permuted DFT matrix (FN = PF ′N)

F ′N =
1√
2

[
F ′N/2 F ′N/2

F ′N/2ΩN/2 −F ′N/2ΩN/2

]
=

1√
2

[
F ′N/2

F ′N/2

][
IN/2 IN/2
ΩN/2 −ΩN/2

]

let N = 2n or n = log2(N)
FN = PM1M2 · · ·Mn

where

Mk = I2n−k ⊗ 1√
2

[
I2k−1 I2k−1

Ω2k−1 −Ω2k−1

]
, k = 1, 2, . . . , n
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Quantum Fourier Transform (QFT)

recall the radix-2 decomposition (F ′2n = F′n)

F′n =

[
F′n−1

F′n−1

] [
In−1

Ωn−1

](
1√
2

[
In−1 In−1
In−1 −In−1

])

= (I2 ⊗ F′n−1)(In−1 ⊕Ωn−1)︸ ︷︷ ︸
Dn

(H ⊗ In−1)

where

Ωn = R2 ⊗ R3 ⊗ · · · ⊗ Rn ⊗ Rn+1, Rk :=

[
1

ω2k

]

quantum circuit for diagonal blocks

q1

Dn

• • • · · · •
q2

Ωn−1

· · · R2
... = =

...
qn−1 Rn−1 · · ·

qn Rn · · ·
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QFT Circuit

q1 H

Dn

· · ·

Pn

q2 H

Dn−1

· · ·
...

...

qn−1 · · · H
D2

qn · · · H

complexity: O
(
(log(N)2

)

in matrix notation
Fn = PnF′n = PnM1M2 · · ·Mn

where
Mk = In−k ⊗ [Dk(H ⊗ Ik−1)] , k = 1, 2, . . . , n
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Conclusions

Deriving the QFT from the FFT

by decomposing diagonal factors in FFT decomposition

extend radix-2 to radix-d QFT decomposition

QFT decomposition and corresponding circuit is not unique

Reference:

Camps, Van Beeumen, Yang. “Quantum Fourier Transform Revisited.” arXiv:2003.03011
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